Constraining Directly Imaged Planet Formation using High Resolution Spectroscopy of Host Stars

STScl Spring Symposium 2023

Aneesh Baburaj, Quinn Konopacky, Chris Theissen, Kielan K W Hoch, Roman Gerasimov

Planet formation pathways

- There are two major pathways proposed for planet formation:
 - 1. Core accretion
 - 2. Disk instability

Directly Imaged Exoplanet Population

Neither formation pathway can explain the formation of all of the directly imaged planets!

Different formation pathways can lead to differences in elemental abundances!

- There is no separation of gas and solids in disk instability, hence the atmospheric C/O ratio matches the host star.

In order to test predictions regarding formation, we need abundance measurements for the planet as well as the host star!

		Peering into the young planetary system AB Pic								
		D Dala		oplanet HIP 65426 b*						
		P. Palm F A	llard ⁷ R Cha	, G. Chauvin' $rnav^8$ C Des	$\mathbf{U}_{\text{orange}^{4,11}}$ D Homeier ^{15,16}	$4 - M I a \sigma range8 I$	Kodet [°]	⁹ P Raudoz ⁸	R. Gratton ⁵ , AM. Lagr	ange ¹ , J. Ramea
Deep exploration JEAN-BAPTIST BRUCF JASON J. 352	of 2 TE] 22 t	Di Tw 2044 Ch 89 Spectrosco the smalle maged ex	rect Imaging Sp vo Jovian Exople naracterization 998-760-1 Multi opic characte est and cooles oplanet 51 Fri	oectroscopy of anets: of the TYC -Planetary rization of t directly dani b	PI: Kielan Wilcomb Co-PIs: Marshall Perrin and Quinn Konopacky PI: Jean-Baptiste Ruffio	12	5.2	NIRSpec/IFU MIRI/LRS 0 NIRSpec/	GO /FS	Allard ¹⁰ **, S.
A Seessing the C/O Ratio Formation Diagnostic: A Potential Trend with Companion Mas Maddalena Reggiani ⁹ , Frans Snik ¹ MODERAL RESOLUTION A DAME OF FORMAN ⁴ MARSHALL D. PERRIN ² BRUCE MACINTOSH ⁵ AND CHRISTIAN MAROIS ⁶										
Kielan K. W	KIELAN K. WILCOMB ¹ , QUINN M. I RUFFIO ^{3,4} , 1414 Integral Fiel Companion				d Spectroscopy of the Benchmark Substellar HD 19467 B			Marshall Perrin		NIRSpec

What about the host stars?

Our goal is to perform atmospheric characterization of the host stars!

We aim to measure the abundan S, Ca, Sc, Ti, Cr, Mn, Fe, Ni, Zn, Y)

We aim to measure the abundances of 15 elements (C, O, Na, Mg, Si,

How many targets do we have?

69 directly imaged companion host stars!

ĸ

M

Levy spectrograph at APF

Image Credit: Laurie Hatch; <u>https://lauriehatch</u>.com

$\lambda \sim 374-900$ nm R~120,000

Directly Imaged System: HR 8799

Adapted from Marois et al. (2010)

Reduced Spectra HR 8799

Forward Modeling

Two part analysis:

Find the basic stellar parameters like effective temperature (T_{eff}), surface gravity (log g) and metallicity ([M/H]) by fitting PHOENIX models Custom PHOENIX grid with fixed [M/H], small range of $T_{\rm eff}$, log g and varying carbon (C) and oxygen (O) abundances used to determine abundance values

Forward Modeling: HR 8799

$[C/H] = 0.11 \pm 0.02, [O/H] = 0.15 \pm 0.10$

Equivalent width: HR 8799

Abundances obtained from measured equivalent widths using the non-LTE spectral analysis software MOOG (Sneden 1973)

 $[C/H] = 0.04 \pm 0.16$

 $[O/H] = 0.18 \pm 0.16$

1.04 1.02 Flux 1.00 Normalized 0.98 0.94 0.92

How do the C/O by the two methods compare?

	C/O	[O/H]	
Solar C/O ~ 0.9	0.50 ± 0.11	0.15 ± 0.10	
	0.40 ± 0.15	0.18 ± 0.16	

What other targets have we measured?

HD 984

51 Eri

HD 206893 has a super-solar C/O (0.71 ± 0.12), while the other three targets have a solar C/O ratio (~0.55) within 1σ .

Adapted from Franson et al. (2022), Macintosh et al. (2015), Kuzuhara et al. (2013), and Milli et al. (2017) respectively.

GJ 504

HD 206893

How do planet and stellar C/O compare?

What are the next steps?

- part of ongoing JWST programs/proposals.
- are measured and current uncertainties are improved.
- Expand host star analysis to remaining targets, including K/M spectral types
- planet occurrence

• Abundance measurements of host stars with companions that are

Comparison of stellar and planetary C/O ratios as further planet C/O

Investigate possible trends between host star abundances and

Takeaways

- Testing predictions regarding formation, require abundance measurements for the planet as well as the host star
- abundances: within 2σ , all five host stars have solar C/O
- Need to improve error margins on stellar and planetary C/O formation/evolution histories

Both forward modeling and equivalent width methods yield similar

measurements in order to have conclusive arguments regarding

51 Eri $[C/H] = -0.01 \pm 0.07$ $[O/H] = -0.02 \pm 0.09$ $C/O = 0.56 \pm 0.11$

Spectral lines: C and O

• Carbon lines include CI line at 4772, 4930, 5052, 5380 and 6587

Oxygen lines include a forbidden Ol line at 6300Å, an Ol triplet at 6155-6158 and an OI triplet at 7771-7775A

Planet formation - Core accretion **Basic theory**

Planetesimals in the protoplanetary disk

Accumulation and coagulation of planetesimals to form planetary core

Planetary core

Core surrounded by an atmosphere: gas giant!

Runaway accretion of disk gas once core becomes massive enough $(M_c \sim \text{several } M_E)$

Planet formation - Core accretion Why doesn't it work?

Maximum planetar (Dodson-Re

(Dodson-Robinson et al. 2009)

Planet formation - Gravitational instability Basic theory

Young star surrounded by protoplanetary disk

Initial protoplanetary disk breaks up into clumps due to gravitational instability Self-gravitating clumps present

The clumps collapse to form planets (gas giants)

Planet formation - Gravitational instability Why doesn't it work?

- This mechanism cannot explain the formation of Jupiter-sized planets closer than 40 AU (Dodson-Robinson et al. 2009)
- Self-gravitating clumps are more likely to evolve into brown dwarfs or low-mass stars (Kratter et al. 2010), but no such population has been found yet (Nielsen et al. 2019).
- Fragments are susceptible to tidal disruptions and shearing (Mejia et al. 2005, Helled & Bodenheimer 2011).

Spectral Template Fitting Forward Modeling procedure

Forward modeling code uses PHOENIX and telluric (PSG) models to get best-fit spectral model

Forward modeling run on masked data to get best-fit value and uncertainties for all parameters

Residuals of bestfit model and data calculated

Residuals and data noise compared to apply 3σ mask to data

(Figure from Santos et al. 2017)

Data Reduction

Raw data (2D echellogram)

Bias subtraction

Data Reduction

 λ (Å)

Spectral Template Fitting Forward Modeling procedure: C/O

Forward modeling code uses custom PHOENIX (varying C, O) and PSG models to get best-fit spectral model

Forward modeling run on masked data to get best-fit value and uncertainties for C and O abundances Residuals of bestfit model and data calculated

Residuals and data noise compared to apply 3σ mask to data

Echelle order

- The light entering the spectrograph is passed through a echelle grating that diffracts the light.
- For a certain wavelength of light, depending upon which order maxima overlaps, echelle orders are defined.

Image Credit: HOWELL, STEVE & Tavackolimehr, Ali. (2019). Handbook of CCD Astronomy.

Spectral Template Fitting Telluric models

- software by NASA.
- water vapor/pwv).
- Another parameter called telluric alpha (α) also included in the model to 0 strengthen/weaken the telluric lines.

Telluric spectra are generated using the Planetary Spectrum Generator (PSG)

• The tool is used to access a database of 20 pre-computed telluric transmittances at 5 different altitudes and 4 different atmospheric water vapor levels (precipitable

Spectral Fitting

Single order fit for one of the echelle orders (Order# 74) for HR 8799

Equivalent width determination Basic Premise

 Equivalent width of a spectral line measures the area of the line relative to the continuum level

Image Credit: https://en.wikipedia.org/wiki/ Equivalent_width

